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ON THE CONSTRUCTION AND INVESTIGATION OF SOLUTIONS
OF BOUNDARY VALUE PROBLEMS OF THERMOVISCOELASTICITY”

S. E. UMANSKII

The uncoupled mixed boundary value problem of thermoviscoelasticity is considered in
a quasistatic formulation. The temperature distribution is assumed nonstationary and
inhomogeneous. The influence of the temperature on the viscoelastic properties of
the material is taken into account by the introduction of a reduced time. The equat-
ions of state of the material are written in differential form as a system of kine-
tic equations in some tensor-type strain parameters. The system mentioned is
equivalent to a Volterra integral equation with kernel in the form of a sum of
exponents. The differential approach used is apparently more convenient for numer-
ical realization /1/ (especially in nonuniform problems) and results in a substanti-
ally different mathematical formulation as compared with that based on the integral
form of writing the equations of state investigated in /2,3/. Precisely for going
over to the boundary value problem are the kinetic differential equations converted
into an operator differential equation in Hilbert space. The existence, uniqueness,
and stability of the solution of the problem formulated are established, and condi-
tions for the convergence of the Galerkin approximations and the stability of the
difference approximations in time are formulated.

1. Formulation of the Problem. Let us consider an uncoupled mixed quasi-static
boundary value problem of thermoviscoelasticity for a body subjected to nonstationary inhomo-
geneous heating (cooling) and mechanical loading. We will consider the material linearly vis-
coelastic, and shall assume that the principle of temperature~ and structure-time correspond-
ence is satisfied, i.e. the influence of temperature and structure changes on the viscosity is
taken into account by replacement of the real time ! by the reduced time t defined by the
relationship

dt = grdt (1.1)

Here gr ie some functional of the temperature history of the material. The governing equations
for such material have the form /2/

: . 0{e{g)— ’ . 4
o®)={c@E—g) JLLZREN 4 (1.2)
p 5
Here o0,¢ and B are six-dimensional vectors corresponding to the symmetrlc stress, strain,

and unconstrained (thermal and structural) strains, c (f) is the matrix of the relaxation moduli
which has the following form in the case of an isctropic material

cW=kOL+260L, L=-+|7h] L=+

= U hk=123ij=123

Up=1 Ut =2 Up=—1i%*j, UpL=3 Uf=0 i5#]
Here k(&) and G () are, respectively, the volume and shear strain moduli I, I, are 6 x6
matrices permitting the separation of the hydrostatic and deviator parts of an arbitrary stress
deformation vector.
In a number of cases of practical importance, the relaxation kernels are represented in
the form of a sum of exponentials with negative exponents. In this case the equations of

state of the material (1.2) are equivalent to the following relationships
M

o=D(E—p)— 3 Dne.’
Mam]
(em”y =grRm (e —&,"—~B), m=1, ..., M (1.4)

(1.3)

Here D is a matrix of the elastic moduli of the material, e,° are strain parameters (varia-
ble state), D,, R, are matrices whose components are expressed in terms of coefficients of
an exponential expansion of the kernel of (1.2). In the case of an isotropic material
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D, = kply + 2Guly;, Ry = pp™ 1, + rpmily (1.5)
D =&y + 2Gky k(0) =ky G (0) =Go, Du = kal, + 26,1,

Here kumGm,Pm:Tmska,Ga are coefficients determined from the condiction of best approxima-
tion of the relaxation curves by analytic dependences

4
G(t)=Got+ icmexp (-.r‘:) k@)=Fk. + ik,,,exp(_—_;;) (1.6)

m==1 ma=x]

The equations of state written in the differential form (1.3), (1.4) result in a sub~
stantially different, and apparently, more convenient formulation of the boundary value prob-~
lem of numerical realization (see /1/) as compared with that investigated in /2,3,4/, based
on the integral representation of the governing equations. Nevertheless, as mentioned above,
the initial relationships (1.3)~ (1.5) and (1.2), (1.6) are equivalent. Indeed, we introduce
into the consideration the quantity ¢, =D, (& —p —&,°) and we convert the system (1.3),
(1.4) to the form

=236n—(D—3Dn)(e—B) Om+ RnOn=Dm(e'—p)

from which (1.2) then follows.
The form of the matrices D, e (t), D,, R, is determined by the nature of the anisotropy
in the case of anisotropic material. Essential for the sequel is just the requirement that
the matrix D be symmetric, positive definite, bounded, and measurable in the domain Q under
consideration, D, and R, should be symmetric, nonnegative definite, and piecewise constant
in Q, the matrix
Al
D.=D—3 D,=!lime()

m=1 =

(rL.7

be positive definite, and that there exist a symmetric, nonnegative definite matrix H,, such

that
HmRm == RmHm =D, (1.8)

{Hmem®. enf) (1.9)

0 y=supmax su
L llp L7 ‘Demc' emc)

m e feRe
Here {,) is the scalar product of six-dimensional vectors defined as the convolution of
their corresponding symmetric tensors of the second rank.
The inequalities

{RmemS. £,°}
= X s WmEm "« Bt (1.10)
0< 1, =\ap n;x‘a ,:?é’n- et et

D e,
t<a=max(t, 3| Quli, @], Q,n=:;£_:-b§% € Lo () (1.11)

also follow from the conditions formulated above.
With respect to the reduction function gr we assume that it is measurable and bounded
at each time ! and there is compliance with the inequality

0 << go < gy (2) <C vraig min gr (f) < vraip max gr () < g, (1) <C g3 << © (1.12)

Here g., g3 are constants, g, (f), g, (f) are continuous functions of the time, vraig min gr and
vraip max gr are true, i.e., the minimum and maximum of the function gre L. (Q) /5/ used
without taking into account isclated points and sets of measure zero.

Let the domain under consideration Q & R® be bounded and have the regular boundary
9Q = 8,Q\/ 4,9, where homogeneous boundary conditions in displacements are given on the sect-
ion 6,Q. surface loads ¢ are applied on the section 3,Q, and in addition, mass forces f act
on the body. We consider that

¢S CIS, (H° (3.0, IS, (H° ()]

Here § =1[0,T] or [0, o] is the time interval, C*[S, 2] is the space of functions from S
continuously differentiable % times with respect to the time in an arbitrary Banach space I,
(H' (Q))* is the Scobolev space of order [ over the vector functions from (Q - R™, where (X —
Y) denotes the set of all pessible mappings of the set X into the set Y.

We consider the strains and displacements related by means of the Cauchy relationships

Eij = 1/2 (auj/azi -+ au,- / 6.2:,)
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Ir-‘
=

which can be written in the operator form

= Bu (1.13)

Here u is the displacement vector, and B is a bounded linear operator acting from the space
of displacement fields

={vive(

ag = M
1 vy

-

into the Hilbert space Y whose elements are the strain (stress) vectors, considered as vec-
tor functions in @ with the scalar product

(2, u)vzg(a, u)dS2=Se,-,-u,-,-dQ, Ve, x= Y {1.14)
Q2 Q@

It is assumed that the set V is also allotted a scalar product

-~
b
.

P

v

y .
(W, vJ

oy P £ e - s . .
v==(Bw, Bv)y = | (Bw, BvidQ, VW, vV
Q

communicating the structure of a Hilbert space to it.

2. Existence, uniqueness, and properties of the generalized solution of
the boundary value problem of thermoviscoelasticity. We write the Lagrange variat-

armiakimm in bha £~
icnal equation in the form

(© By = { guds + {fw;dQ, Vvav (2.1)
0.9 Q2

Let the symbol Y* denote the space conjugate to Y, and let us identify Y and Y* in
conformity with the Riesz theorem. We define the function p= CI[S,Y] in such a manner that
p (i} for any fixed ¢ is a continuation of the functional

L{Bv)= 5 Q; (£)v;ds
given in a set of values of the operator B in the space Y , into the whole space Y* =7,
Then we write the integral identity (l.l) as the operator equation

B*¢==B*u + (2.2)

Here B* :Y* — V* is the operator conjugate to B, and V* is the space conjugate to V.
Substituting (1.3) into (2.2}, we obtain the equilibrium equation in displacements

;n—’-Dﬁ.’.? D e ¢ (2.3)

Here K = B*DB is an elliptical operator from V into V* corresponding to the homogeneous
boundary value problem of the theory of elasticity. The operator K is self-adjoint because
of the reflexivity of the space V. Moreover, as follows from the results in /4,5/, it
possesses a bounded inverse K-!, and (2.3) is therefore solvable uniquely (for given e,°)
at any fixed time (& 8.

Finding u from (2.3), and then using (1.13) and (l1.4), we have

; M \ AN
(€n") + #Rm (£, — 0 3 Die,® | = grR, (BK-1 (f + B*DP — Bw)—P), m=1,..., I, (15, Y] (2.4
k=t /

Here 0 = BK-!B* is a self-adjoint, nonnegative definite operator in the space Y.
Let us define a finite set of scalar products of the form

(e 00m = § (Hom, %} dQ = (Hom, 0y, m=1,..., 3 (2.5)
Q

in the set Y.
We call Y, the set Y with the scalar product (2.5), and we denote the identity mapping

Y ~Y, by i, and examine the direct sum X of all Y, (m =1, ..., M). The set X =Y, &
Y.& ...&Yy consists of all possible ordered sets of vector-functions from Y, identifi-

able with the corresponding state parameters.
Let L =1(g° ..., €en" ...,8n and 7n, be arbitrary elements of the spaces X and Y,,.

We define the projection Q,:X —Y, and imbedding L,:Y,—~ X operators in such a way
that

Qut =¢,°Y,,, L, =0, ..., 9" 0, ...,0=X
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The set X becomes a Hilbert space if a scalar product is given therein by using the
relationship

M M
& 0= "g‘ (Qmbs me)zmgl(ﬂmqm;, )y, Vi rsX (2.6)

Using the space X and the system of equations (2.4), we reduce the problem of thermovisco-
elasticity under consideration to a Cauchy problem for the following operator differential eq-
uation

T +grlll =, L=sC IS, XLEWO) ==X (2.7)

Here the operator II: X — X and the function % =C|[S, X] are represented in conformity with
(2.4) in the form

M : M M
n=73 Lm(Rm—RmO pY DkQ»)' v= 3 grL.R,(BK- (f + B*Dp -+ B*n)—p) (2.8)
ma=] =] M=l

Lemma 2.1. The linear operator Il1:X — X is self-adjoint, coercive, and bounded,
where the inequality

LIEN*<SME D < |82 (2.9
is correct for 1T, =1/(ay),t, positive constants defined by (1.9)— (1,1l).

Proof. Taking account of (2.6), (1.8) and the symmetry of the matrix D, , the expres-
sion @§, %) has the fom

M M M
(ﬂ;, x) = 2 (DQOC- le)}' - ( 2 Dan:;' 6 2’ DQOx)Y (2.10)
m=] m=1 m==1

Hence, because of the self-adjointness of 6, the self-adjointness of the operator II follows.
To prove the inequality (2.9), we consider a hypothetical body identical to that given
in shape and viscoelastic properties, but free of external loads including the thermal. Let
a certain continuously time-varying distribution of the state parameters {e,,f}f"":l to which
the function
M
tn= 3 L& (heC[S X]

ma==1

corresponds, originate in the body mentioned under the influence of chemical transformations.
In this case

M M
—_ .C' ., = D (4 — . <
e=0 )2'1 D,e,’, (. ) Ex( ' (B — 2). €5y, (2.11)

The rate of change of the additional energy E’' for the body under consideration at any
time is E" = (0, £)y = (B%a", u5 = <0, w> = 0

On the other hand, taking account of (1.3) and (1.7), we have

Lo M - 1 d(D.e ¢) i 4 M . . M e
E" = (De — TEI D, e)Y=_2_—T_+ -5 [Z D, (e —€5,), e—z,,,),,] + Z ®,, (e~ €,). ey
Mar] Mom]l
Because of (2.10) and (2.11), this last component is (H{', &) = — ¥/, (11, 2), from which

by taking into account that E” = 0, we obtain
(mg, C)=2(Dm (& —€m), €~ en)y + (D & ey >0
m
Using (1.11), the triangle inequality, (1.9) and (2.6), we have

M M M M
(I B >a 1[ 21 (D (e —enf). £~ en)y -+ D) (Dpe, 8)y]> a3 (Dmem®, en)y > (ay)™? S Hpept enS)y = (ey) 11§12
m= m=1 m=1 My
Taking into account the nonnegative ~definiteness of the operator @ and the expressions
(1.8)— (1.10), we obtain from (2.10) for y = ¢

W% &) = N (Dnent, em) — (2 Drmeme, 8 3 Dmem)y < X (D&, ey <1218 12
m m m m
The lemma is proved.
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The unique solvability of the Cauchy problem for {2.7) and the boundedness of the solu-
tion on the half-axis [0, »} folliow from Lemma 2.1, the inequality (1.12), and the general
results for opsrator differential equations {see /6/, for instance}.

. Theorem 2.1. Let {(!) be the solution of {2.7) that satisfies the condition (0) =
so- Then the estimate

i t v
BEOI<Bolexp (— 7 {arioyds) + §ie @) hexp(— far () ds)ap (2.12)
8 g &
is valid for the norm L .
Proof, we multiply (2.7) sealarly by . Taking into account that &, Daei,ill we
have AL Y LR
I8id I 81/ de = (9, §) — (gpW8, §)
t1ein tha Schware inamality as wall as 1 171 an {2 Q) we shbain
vEIng Las schiwa TZ O ARRQUALITY Ak WokL 38 (1.0} &nG (L.8), we {dtain
TP <Y — g (0 184 {2.13)
ey madkdmatn {3 19l HAlTace Swoam o fmomr=aTIidar 700737 mmd sl Mrecaeos Y esavm  Faoso 7T
AT W LIMLALT lLe kel AVLIOWIS IR WS L5 Rbode ¥ VL 2y A Lok WLU&BVQ&J. AT, i»BV 7 7 4

for example).

3. Convergence of the Galerkin approximations. Let us determine the one-para-
meter families {W,} and. {Z,} of approximate finite-dimensional spaces whose dimensionality
will grow without limit under the condition that some common parameter 2 for these families
tends to zexo. Here {Wi} is a sequence of finite Hilber:t spaces, each of which is isomorphic
to a certain closed subspace Vx =¥, where Pp: W,V is an operator setting up the iso-
morphism menticned and thereby being the operator imbedding W) inte ¥, {Zs} is a sequence of
finite Hilbert spaces such that for any Z, there exists an operator S :Z,—Y setting up an
isomorphism between Zy and the space Y, CV; Pp*: V¥ Wp* and §,: Y = Y*— Zy =2y are,
respectively, operators adjoint to Py and S, and defined 1?%7 é‘)‘\e relationships

(Sw*e, o)z, = (& Swealy, Ve = ¥* = Y, my &= Zx. (Bn*hh Waa = (L Pawy), VISV, wo =W, 3.1}

Here (I, vv denctes the action of a functional f<=V* on an element of the space V.
The scalar products in the spaces 7, and W, ave given as follows:

(24, ls)z,, = ($m. Snza)y, Vayza & Zn, (wy, Wz)Wh = (Pywy, Pawo)y, Vw, wo = Wy (3.2)
It is assumed that
Bhw, =Y, Ve, W,

Then the operator Bx = 5,*BP, = (W, Z) is correctly dermined.
Let us set up a correspondence betwsen the notation introduced and the terminclogy taken
in the literature by the method of finite elements /8/, which is a variation of the Galerkin

method. In this case % is the maximum among the dia.mters of the slements on which the in-

itial domain is separated, W, is the set of nodal displacements vectors satisfying the kine-
matic houndaryv conditiong, 2, is the sat of strain valuss of charactaristic points of the

MATLIC LOWNEGRDY CORCLTIVEy &4p 18 WO Svb SLIrain uas 1AL aLLRL L3 a1

slement {for instance, at the centers of gravity or other weighting points), the cperater B2,
is defined by using a function of the shape of the slement, and the operator B, within sach

gt afasrming the nodal 83 en? arementz ints straing
w08 ceomente ALNS,

element vw;.x,cayun&: o the matrix trangforming

Let us note that because of the definition (3.2) of the scalar products, the operators
Ky = PAKP, = (W)~ Wp*), 8, . BKy'By* = (Zy o Zn)

conserve the fundamental properties of the operators K and 0, respectively. In particular,
they are salf-aéjoxnt and bounded, the operator @y 3.3 nonnegative definite, and K, is co-

B s B o YT ~F e i Em Awar F oo TH oa o W the
erczve, and me:exom, possessss a boundad inverse na 8T THaT KO0 any e VU, pE s The
eguation

ki
w” oA We ol _ TR & 7 I A
RNpUy == Fpl = By"Op@y  P==f = VP + 21 Upty
m=}

o~
[V
W
)

approximating the problem (2.3) is uniguely solvable.

Wwe call the corresponding approximation convergent if
imi IS BLKR (P 4 B S, %y — BK T + By fr =0, Yo=Y, fev* {3.4)
HmisS,S T llpwsi} {2.%)
sl At Y ¥ hehded
Rosls

Compliance with the relationships (3.4) and (3.5) is assured by the selection of the fam-
ilies {Wh} and {Z,}. In particular, a sufficient condition for convergence when using the
method of Finite elements is the requirement of homogeneity of the basis /9/, which reduces in
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the case of triangular elements to the fact that the minimum angle in the triangles will re=-
main greatexr than a certain fixed constant as the mesh is made finer.

Let us construct an approximate finite space E, for the space X. We consider an
ordered set of spaces {Z,,,,,};",L,, sach of which consists of the same elements as the space Z,
but is alloted a scalar product of the form (W umn = (Hpma ). Let us define E» as their
direct sum E, = Zw 5 Zoy @ ... = Zppy.  The canonical projector 6,5 : Ey— Z,, and the canonical
imbedding operator Lys: Z,,-—> En are identical to the operators L, and 8, introduced in Sect.
2, and the scalar product E, has the fomm

M
(gm 'X.h)E W e mgsx (HQOhgm thxh)zhs V;&I& = Eh

Let 1i,, be an operator assigning the identity mapping Z,-» Z,; Then the operator

M

th Z Lmimshi;n:‘hQnmE(Eh"’ X) (3.7)

defines the isomorphism between E, and some closed subspace X, & X, where [l jx = 1L} B,
Let J.*.X* ) U 5L R Eh be an adioint operator to I {according to the Riesz theorsm,

anll afjeint. Operavld LCLXLRLNG

8L ept o E P S 3 wh ~
we identify E,* with E, and X* with X). For the operator I, we have J*J, = lg, and in
conformity with {3.7) and (3.5)
lm{3J*—Ixl =0 (3.8}
R

Here Iy, Iz, are unit operators in the appropriate spaces.
Let us define the operators I, & (Ep-— £1), Ern &= C 1S, (En
P, = C IS, Ex] Dby using the relationships
M

i

53]
z,
i
£

Mme S L. /R —R 6 DO goy = F . ¥ou T2 PPN
*=a Lk TR A SR SIRVR Gd ECERS ban YR BaTh (3.9
M=) kol
»
Yn=grn zlehRm [BAKG! (Paf + Bo*S,* (DB + p)) — Su*Bl
M
We consider the Cauchy problem
T -+ grallnfn = ¥ Ln & CH IS, Epl, 0n (0) = Jp* G (3.10)
which is the finite~dimensional analog of the problem (2.7).
Barsattomn ~nfF +tha AafFindiddian A€ dtha oralar meadnses (3 £ Phea mmaradmses TT amAd v 2w o ey

SLTAUSE O TNE QEIInNlTIon OL Lne SCALAr Proquet (3.5), WA8 OPEXatoXs aay 80C gy, SCOsSSIve
the fundamental properties of the operators II and gr, in particular, inequalities analogous
to (2.9) and (1.12) are satisfied, and therefore the problem (3.10) is uniguely solvable and
its solution & {) is subject to an estimate identical to (2.12).

We call the quantity J,§; the Galerkin approximation of the solution of (2.7) and we
estimate the magnitude of the error & = I, — L.

et the operator J, act on (3.10} from the left, and we subtract (2.7) from the resuit.
Using the expansion {ghzl,,'.lh and the second formula in (3.9), we find

8 = — (1,87, ,%) GILLN 8+ A (), 8(0) =8, = 3,0, %8, — L, (3.11)
Ay=A )+ A () + As(t), A (=1, ~¢
AN=0y—3 3% MImM L Al =g (B~L1L1,%1

Since the operator (NEp Il I*) = C[5 (X, ~ X))} Possesses the same properties as the operator
grll, the estimate

18 {6 <8 [oxp (-— L g:x (s)dS) e S A (p}ffexp (—»f; (?g; (s}ds)dp {3.12)
¢ [ 1

follows from (3.11) in conformity with Theorem 2.1.
Using (3.4), (3.5) and (3.7), we obtain

limsup [ 4; {f}}=10 (3.13})
he t=2
ITn ronfarmidoy wibh (T Q)
In conformity with (3.8)
Iim =0, lim A ()=
Hm 3, | ,“..07‘2.’“ {8} =0 (3.14)

According to (1.12), JA;(0l<gla() where a{y=0-JmJ,*% Let
Ui=¢,, ID.Qt=qa Qal)=2,
m
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Taking into account (2.8}, (3.7) and (3.9), we have
B () = B [{em® — 538p* £5,% -+ (848:8x%q — 8q)}
Hence, taking account of {3.5), the definitions of the operators ¢ and 8, of (3.4}, the

triangle inequality, as well as the boundedness of |§()| and gz {# there follows
i P
hljx’iégﬂ.xi,(t)" 0 (3.15)

There results from {(3.13)— {3.15) that iin(x} sup] 8 (= 0.
=
The following assertion is therefore proved.

Theorem 3.1. Under the assumptions (1.8)~ {1.12), {3.4) and (3.5}, the approximate
solution of the thermoviscoelasticity problem obtained by the Galerkin method converges uni-
formly in time to the exact solution.

4. Difference approximation of the derivatives with respect to time. =as
follows from the resvlts in Sect.3 for the definition of the approximate Galerkin solution of
{2.7)}, it i necessary to solve the Cauchy problem for the system of ordinary differential eq-
pations (3.10). Let us consider an approximate (stepwise) method of solving (3.10) by replac-
ing the time-derivatives by finite differences.

Let uj}?’,, be some partition of the time interval § under consideration, Af= ¢ — 1, G
is an approximate value of the function §, (1) obtained by a stepwise method

1

Sy

+1 a1
:

. i ;1
g;ir?;=;‘¢; gt ¥, =5 5 Py {1y a2

-
[

g
Then, in conformity with the explicit difference approximation for (3.10), we obtain
A (g, — Atighy DB + Atjpy! (4.1)
Wwhen using the implicit approximation with weights we have
{Ig, + @A) 37 = A g/ + (I, — e, g, 10,) ) 4.2
Here a, w, are the weight factors, o, + e, = 1. The implicit difference scheme (4.2} is ab-
solutely stable for a, > %, however, since the operator (/g -+ m‘Atjg%.hﬂh ~1  is impossible to

evaluate in explicit form, as a rule, the solution of (4.2) is determimed by iterations by
the formulas

= x!_{f? BRE, N = e g, I BT 4 {Lg, — @23 Zpalhy) 6o + At (4.3}

From {4.2) and (4.3) we obtain
;;":-1 - ;;’:—1, N o ml/_\,)_gi;:}}n“ (C,"“"‘ . ;;‘:1, k-1y
Therefore, it is sufficient for convergence of the iteration process (4.3) that
@5 § gy My | t, from which by taking account of the estimates for the norms of g,, and 1,

resulting from inequalities that are even valid, as mentioned above, for finite-dimensional
operators, we have the criterion for time spacing gselection

' ‘]-6—1
8= X7, Ss.»(t)dt 4.4
4

1

A< g

Al

i

To agsure the stability of the explicit scheme (4.1) it is sufficient to require /10/ that
the norm of the transition operator Tyl = IE;; — A:jg"ﬁ I, not be greater than one. Estimation
of the norm of T,/ is made difficult by the fact that the operator I/ 1is nen-self-adjoint
because of the noncomputativity of gy, and fm,. The operator I,/ becomes self-adioint dur-
ing rencrmalization of the space Ep by using the energetic scalar product (;hz,,)n, = (B Bn, z,‘),_-h.
Taking into account that for a self-adjoint positive definite operator I, there“exists a self-

adjoint operator II,° such that m,* /" =10, , we have
; (I Ch/ 8 g, | At 0 g, TL e Epye
ET iy = sup HIL, hﬁsn SR sup | { — ek h(zm xh) Lini. 3 [ Qi (4.5)
roogef,  Uhgs Bug, Xy re PRlE), i
(3 Bradl Ln. Tdg, T8l % XlE, 4

— TV =1 —At.i R == AL SUP et
'X.h = th ;h = Eh- QX 1 Atj l:: (Ln- zh)Eh Qz J Ly (xh' ‘lh)Eh
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The quantity @,< 1 because of nonnegativity of the operator g;,. For @,<1{ it is suf-

ficient to require

Bty 2/ {18y ) < 2/ 1 T ghy T (4.6)

Condition (4.6) is the sufficient condition for stability of the explicit scheme (4.1).

The scheme (4.1) and (4.2) are first and second order approximations, respectively, which in
combination with the stability assures their convergence with the same order of accuracy /10/.
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