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ON THE CONSTRUCTION AND INVESTIGATION OF SOLUTIONS 
OF BOUNDARY VALUE PROBLEflS OF THERf+lOVISCOELASTICITY* 

S. E. UMANSKII 

The uncoupled mixed boundary value problem of tbermoviscoelasticity is considered in 
a quasistatic formulation. The temperature distribution is assumed nonstationary and 
inhomogeneous. The influence of the temperature on the viscoelastic properties of 
the material is taken into account by the introduction of a reduced time. The equat- 
ions of state of the material are written in differential form as a system of kine- 
tic equations in some tensor-type strain parameters. The system mentioned is 
equivalent to a Volterra integral equation with kernel in the form of a sum of 
exponents. The differential approach used is apparently more convenient for numer- 
ical realization /l/ (especially in nonuniform problems) and results in a substanti- 
ally different mathematical formulation as compared with that based on the integral 
form of writing the equations of state investigated in /2,3/. Precisely for going 
over to the boundary value problem are the kinetic differential equations converted 
into an operator differential equation in Hilbert space. The existence, uniqueness, 
and stability of the solution of the problem formulated are established, and condi- 
tions for the convergence of the Galerkin approximations and the stability of the 
difference approximations in time are formulated. 

1. Formulation of the Problem. Let us consider an uncoupled mixed quasi-static 
boundary value problem of thermoviscoelasticity for a body subjected to nonstationary inhomo- 
geneous heating (cooling) and mechanical loading. We will consider the material linearly vis- 
coelastic, and shall assume that the principle of temperature- and structure-time correspond- 
ence is satisfied, i.e. the influence of temperature and structure changes on the viscosity is 
taken into account by replacement of the real time t by the reduced time 5 defined by the 
relationship 

dE = grdt (1.3.) 

Here gT is some functional of the temperature history of the material. The governing equations 
for such material have the form /2/ 

Here a,e and $ are six-dimensional vectors corresponding to the symmetric stress, strain, 
and unconstrained (thermal and structural) strains, c(t) is the matrix of'the relaxation moduli 
which has the following form in the case of an isotropic material 

Uk = 11 U*jk 111 k = I, 2, 3, i, j = 1, 2, 3 

Ui,' = 1; u‘*? = 2, UJ = -1, i fi , Uii3 = 3, 17,) = 0, i pi 

Here k(t) and G(t) are, respectively, the volume and shear strain moduli ZI,Za are 6x6 
matrices permitting the separation of the hydrostatic and deviator parts of an arbitrarystress 
deformation vector. 

In a number of cases of practical importance, the relaxation kernels are represented in 
the form of a sum of exponentials with negative exponents. In this case the equations of 

state of the material (1.2) are equivalent to the following relationships 

(1.3) 

(e,')' = ~TR,,, (e - ems - j3). m=l, . . ..A2 (1.4) 

Here D is a matrix of the elastic moduli of the material, amc are strain parameters (varia- 

ble state), D,,R, are matrices whose components are expressed in terms of coefficients of 
an exponential expansion of the kernel of (1.2). In the case of an isotropic material 
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(1.5) D, = k,I, + ZGJ,, R, = pm-I, _t r,-'Ia 

D = k,I, + 2 GJ,, k (0) = k,, G (0) = G,, D, = k,I, + 2G,I, 

Bere k,,G,,p,,r,,k,, G, are coefficients determined from the condiction of best approxba- 

tion of the relaxation cumes by analytic dependences 

G(~)=G,+ ~G_~xP(-$), k(t)=k= + t,bexP(-$,) 
?TL=1 m=l 

(1.6) 

The equations of state written in the differential form (1.3), (1.4) result in a sub- 
stantially different, and apparently, more convenient formulation of the boundary value prob- 
lem of numerical realization (see /l/) as compared with that investigated in /2,3,4/, based 
on the integral representation of the governing equations. Nevertheless, as mentioned above, 
the initial relationships (1.3)- (1.5) and (1.2), (1.6) are equivalent. Indeed, we introduce 
into the consideration the quantity c, = D,(5 - f, - smc) and we convert the system (1.3), 
(1.4) to the form 

from which (1.2) then follows. 
The form of the matrices D,c(t),D,,R, is determined by the nature of the anisotropy 

in the case of anisotropic material. Essential for the sequel is just the requirement that 
the matrix D be symmetric, positive definite, bounded, and measurable in the domain Q under 
consideration, D, and R, should be symmetric, nonnegative definite, and piecewise constant 
in 9, the matrix 

D,= D- $ D,,=limc(f) (1.7) 
,lll, 14.X 

be positive definite, and that there exist a symmetric, nonnegative definite matrix II,such 
that 

H,R, =R,Ii, =D, (1.8) 

fl<y==supmax 
f. EmC) 

m L;:E*, $1:. Q,C) 
(1.9) 

L! 

Here ( ,) is the scalar product of six-dimensional vectors defined as the convolution of 

their corresponding symmetric tensors of the second rank. 
The inequalities 

(1.11) 

also follow from the conditions formulated above. 
With respect to the reduction function gr we assume that it is measurable and bounded 

at each time t and there is ccmpliance with the inequality 

0 < go -C g, (t) < vraic min gT (t) < vrais mar gr (t) Q g, (t) 6 g, < 00 (1.12) 

Here RC, g3 
vrain mas gr 

are constants, g, (t),g,(t) are continuous functions of the time, vraic min gT and 
are true, i.e., the minimum and maximum of the function gr E Lti (9) /5/ used 

without taking into account isolated points and sets of measure zero. 
Let the domain under consideration Q E RS be bounded and have 

ao = a,o v ?&a, where homogeneous boundary conditions in displacements 
the regular boundary 

ion a&. surface loads g are applied on the section a&, 
are given on the sect- 

and in addition, mass forces f act 
on the body. We consider that 

F E G" Is, (H" (a,n))aI, I E co IS, (HO (a))*~ 

Here S = IO, I') or 10, ml is the time interval, C"iS,X) is the space of functions from 8 
continuously differentiable k times with respect to the time in an arbitrary Banach space 2, 
(H' (a))" is the Sobolev space of order 1 over the vector functions from (Q+R"),where (X-+ 
Y) denotes the set of all possible mappings of the set X into the set Y. 

We consider the strains and displacements related by means of the Cauchy relationships 

&ii i= ‘1~ (auj I hi + hi / az,) 
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which can be written in the 

Here u is the displacement 
of displacement fields 

operator form 

e = Bll (1.13) 

vector, and B is a bounded linear operator acting from the space 

v = {v I v E (H’ (Q))t, v I&Q = 0) 

into the Hilbert space Y whose elements are the strain (stress) vectors, considered as vec- 
tor functions in B with the scalar product 

(a, NY= s (e, x)dn= 1 eij%jdfL Ve, XEY 
* * 

It is assumed that the set V is also allotted a scalar product 

(w, v)v=(Bw, Bv)y = s (Bw,Bv} dC2, VW, VE V 
L) 

(1.14) 

(1.15) 

communicating the structure of a Hilbert space to it. 

2. Existence, uniqueness, and properties of the generalized solution of 
the boundary value problem of themoviscoelasticity. We write the Lagrange variat- 
ional equation in the form 

(2.1) 

Let the symbol Y* denote the space conjugate to Y, and let us identify Y and Y* in 
conformity with the Riesz theorem. We define the function p c C [S,Y] in such a manner that 
p(t) for -&y fixed t is a continuation of the functional 

L(Bv)= J vj(t) ojds 
0252 

given in a set of values of the operator B in the space 
Then we write the integral identity (1.1) as the operator 

B*a= B*fi + f 

Here B* :Y* + V* is the operator conjugate to B, and 

Y, into the whole space Y' =: Y. 
equation 

(2.2) 

V* is the space conjugate to V. 
Substituting (1.3) into (2.2), we obtain the equilibrium equation in displacements 

Ku= E+B*p, p=p+ Dfl+% DrnemC 
Ill-1 

(2.3) 

Here Ii E B*DB is an elliptical operator from V into I;* corresponding to the homogeneous 
boundary value problem of the theory of elasticity. The operator K is self-adjoint because 
of the reflexivity of the space V. Moreover, as follows from the rSsultS in /4,5/, it 
possesses a bounded inverse K-1, and (2.3) is therefore solvable uniquely (for given E,‘) 

at any fixed time t CE s. 
Finding u from (2.3), and then using (1.13) and (1.4), we have 

(e,')'fgTR, (e,‘-Ok~l D,e")=gTR,(BK-l(tiB*DB +B*p)-fi), m=l,...,.l~,fiEC’\S,Y1 (2.4) 

Here 8 = BK-lB* is a self-adjoint, nonnegative definite operator in the space Y. 
Let us define a finite set of scalar products of the form 

(% %I== s (H,q, x}dCJ== (Hmq,x)yr m=l,..., Jl (2.5) 

n 
intheset Y. 

We call Y, the set Y with the scalar product (2.51, and we denote the identity mapping 

YAYm by i, and examine the direct sum X of all Y, (m = 1, . . . . M). The set X = Y, $$ 
Y, ,G' . . . 8 Y&f consists of all possible ordered sets of vector-functions from I-', identifi- 
able with the corresponding state parameters. 

Let s = (elc, . . . , EmC, . . . + E’M) and I&“ be arbitrary elements of the spaces -%Z and Y,. 
We define the projection Q,,,:X+Y, and imbedding L,:Y,-c X operators in such a way 
that 

Qm5 = F,,,~~Y,,,, L,,,qmc = (0. . . , qm’, 0, ., O)c x 
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The set X becomes a Hilbert space if a scalar product is given therein by using the 
relationship 

(5, x)=H, (QmL Qmx) =m$LQmS. Qmxh, K7.EX (2.6) 

Using the space X and the system of equations (2.4), we reduce the problem of thermovisco- 
elasticity under consideration to a Cauchy problem for the following operator differential eq- 
uation 

5' i- grnb -= *, f E C' IS, Xl, 5 (0) = 50 E x (2.7) 

Here the operator II :X+ X and the function Q EC [S,X] are represented in conformity with 

(2.4) in the form 

(2.8) 

Lemma 2.1. The linear operator n:X+X is self-adjoint, coercive, and bounded., 
where the inequality 

% II 6 I( * Q (W? 6) < rz II 6 II 2 (2.9) 

is correct for 71 = 1 / (a$, r2 positive constants defined by (1.9)- (1.11). 

Proof. Taking account of (2.6), (1.8) and the symmetry of the matrix D,, , the expres- 
sion (ng,x) has the form 

Wt. x) = 5 (D,,Q,,,L Q,,V,- - ( $ D,,,Q,,,L 0 $ Dn,Q,& (2.10) 
Ilk=1 m-1 m==, 

Hence, because of the self-adjointness of 0, the self-adjointness of the operator II follows. 
To prove the inequality (2.9), we consider a hypothetical body identical to that given 

in shape and viscoelastic properties, but free of external loads including the thermal. Let 
a certain continuously time-varying distribution of the state parameters (en:]& to which 
the function 

C(1) = $ L,EC,(l)E c [S.X] 
VII=1 

corresponds, originate in the body mentioned under the influence of chemical transformations. 
In this case 

M M 
e=O xD,ekC, (DtE)= x (D,(e&-8). G,)r, 

k=-I m-1 (2.11) 

The rate of change of the additional energy E’ for the body under consideration at any 
time is 

E"= (a..+ = <B*a',u> = (0,~ = 0 

On the other hand, taking account of (1.3) and (1.7), we have 

Because of (2.10) and (2.11), this last component is (l'ic', F) = -VP@& f), from which 
by taking into account that E" = 0, we obtain 

(I% 6) -~(D,(e--r,c). e--~,,~)~+(D,e~ e)r>O 

Using (l.ll), the triangle inequalgy, (1.9) and (2.6), we have 

Taking into account the nonnegative-definiteness of the operator 8 and the expressions 
(1.8)- (l.lO), we obtain from (2.10) for I= i 

!Dt 6, = ~(D,+& e,') - jx D,,F+,,~, ~~D,,,B,~)~. < ~(D,,,E,~, E,,,+c zt !! 6 1;' 
m m m m 

The lemma is proved. 



790 5. E. Umanskii 

The UnSque solvability of the Cauchy problem folr (2.7) and the boundedness of the solu- 
tion on the half-ax%s &co) follow from Lemma 2.1, the inequality i1,12f s and the qeneraf 
resufts f0r operator differential eguatfons isee r'61r for instance>. 

Theorem 2.1. .~et c(t) be the solution of 12,7) that satisfies the conditjL0n 
CO. Then the estimate 

j (U) -= 

is valid Ear the Mrm I\ f I\ . 

Proof, We muftiply 12.7) 
have 

Clsinq the Schwarz inequality 

3. Convergence of the Galr?rkin approximations. Let US determine tie one-para- 
meter farkU.lSes {WfJ aMi. (2,) Of approximate finite-d&mensional spaces whOse dim@nsr&cmality 
wfll grow WlQfout lintit; Wder the conU3on that soxie coB53on paramcetarx h fOr theso families 
tends to zetrcl. Ser.5 (Wa) is a sequence of finFte ?Xibert spaces , each of wEti& is ismQaic 
t0 a cerbtin csosed subspace v, E Y, ?&ere &: wh"y is m cpm&tor setetig up t&2 fso- 

=q&i~m aentionect and thereby being the Operator fmbedting tB, intO V, (Za) is a sequence of 
finite fiilbart spaces such that for anp it& there exiota an 0peratOX $ :&-+Y setti.ng up an 
i~0m0rphiSm between zh and the space YhcY;Ph*: V*+W,,* and &,:Y=Y*+Zh=Zk are, 
respectively, operators adjaint to PI and & and defined bV +he relationships 

(3.6) 

@I;**, 7(h)Za = 4% ‘%&“I tr, E t- = Y, % es 4. Ph’f, vsiPh)h = <r* P*wQ, "dP E v*, W?s EI tv, f3.11 

Eere (t; v) denotes the action of a funQW.arrz8.l fEY* on an olea&ent zsf the space v, 
The SCalar products in the spaces Zh and W, are given as follows: 

SrphWAEYlr, VT% E ry?& 

Then the operator & -~il*Bp,~jW~~Z~ is c0rreCW.y dermined* _ 
jet us set up a correspondence between the notation introduced end the teermfnOl.oqy taken 

in the litrarrture by the method of finite elements /S/, which is a variation of the Galerkin 
method. In this case k is the maximum Wnong the diamters of the elements on which the in- 
itial dam&n is separate&, w,,is the sat of nodal displacements vectors satisfying the kine- 
matic boundary conditions, Zh is the sat Of strain WI&es of characteristic pointl Of the 
element (far instanceI at the centers af gravity OS other weightinq pOints1, the operator PI, 
is defined by using a function of tie shape af the element, and the operator 4 within each 
element carresp~nds t0 the matrix transf0rming the nodal disp~acemes~r int0 strsifis. 

Let us note that because of the definition (3.2) of the scalar pXQdUCts, the QpAratOrS 

Kfl :.i P,,*KPh E (by), -+ w/,*), % %&-‘gh* f% (Z/L rr*l gh) 

conserve tie fundamenral properties of the operators K and 8, respectively. Xn particular, 
they are s&f-adjoint ana bounded, the Operator 6$, is nonnegative definite, and &is co- 
ercive, ana therefore, possesses a boun&d invtlrse &“’ so that for any P=F'*,pE?Y the 

ESp8ti0l-l 

Ii 

Kh% = P,,f + ls,%p, p= p i w + 2* D&m” 13.31 

appraximafing the prolsl~ (2.3) is ~rriWely s0lVablo* 
we call the correspclnding approxfrnation convergent if 

~~~~~~~~~~*~~~~~ + ~~~~*P~-E~-~~~ f 8*p;)ijr==Q t Vf?E P, EEEff* E3.41 

23 ii sP&* -fyj{yl;=:O 13.5f 

CompSj.ance with the relationshipr; (3.4) and (3.5) is assured by the selectSan 0f the fz+ 
ilies {Wh} and {Z,}. Ln particular, a sufficient candition for cOnvergence when using the 
method of finite elementfla is the requirement of homogeneity of the basis /g/, which reduces ih 
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the case of triangular elements to the fact that the minimum angle in the triangles will re- 
main greater than a certain fixed constant as the mesh is made finer. 

Let u8 construct an ap roximate finite space Ek 
P 

for the space XI. We consider an 
ordered set of spaces {Z,k)$,,, each of which consists of the same elements as the space Zh 
but is alloted a SCalttr prOdUCt Of the form (1]k, x&k := (&nk+ Xh)rk. Let us define Ek as their 
direct sum Ek = Zlk F ZY, e . . . % Znrk. The canonical projector Omh :EI,-+.&, and the canonical 
imbedding operator Ltnk:Zmk-+ E h are identical to the operators L, and 3, introduced insect. 

2, and the scalar product &, has the form 

Let imk be an operator assigning the identity mapping Zk- Zmk. Then the operatox 

Jh I= il Li,,,S,i-,‘,Qti E (EF, -, X) (3.7) 

defines the isomorphism between EI, and some closed subspace X~E X, where liJk& ix = #6#sk. 
Let Jk*:X* = X+Ek* = Ek be an adjoint operator to Jk (according to the Riess theorem, 
we identify Eh+ with Eh ma X* with X). For the operator &, we have J,,*J,, = Is, and in 
conformity with (3.7) ma (3.5) 

lim// JkJk*-ir Ij = 0 (3.8) 
"--I 

Here Ig,XE,, are unit operator5 in the appropriate spaces. 
Let us define the operators nkE@k+ Ek), gThE CIS, (&“rEk)l and the vector function 

$I~E C1S,Ek] by using the relationships 

nh = iI bnh @m -%&h jg I)rf&ik) t @h = Jh*gTlh (3.9) 

(ilk = grh 4 LmkR, \BkI(.;;'(Pkf + sk*sk* (Dp + p)) - %qj 

We consider the Cauchy problem 

t;h' f gZdh6h = *he &I E c’ is, Ehlt tk (0) = Jh*tO (3.10) 

which is the finite-dimensional analog of the problem (2.7). 
Because of the definition of the scalar product (3.61, the operators nk and @~+k conserve 

the fundamental properties of the operators n and gr, in particular, inequalities analogous 
to (2.9) and (1.12) are satisfied, and therefore t&e problem (3.10) is uniquely solvable and 
its solution gk(t) is subject to an estimate identical to (2.12). 

We call the quantity Jhgh the Galerkin approximation of the solution of (2.7) and we 
estimate the magnitude of the error 6 = J,,'& - 6. 

Let the Operator Jk act on (3.10) from the left, and we subtract (2.7) from the result. 
Using the e~sZX%iO~ lEk = Jk*Jk and the second formula in (3.9), we find 

6' I -(Jkg~kJk*)(JkIIkJk*)6+A(f), 6 (o)=&, = JkJk*&- b (3.11) 
A@) = AI (*) t&(k) f&(k). A,(t) - Jk+k -9 

4(f) = (Ir - JkJk*)gr~Jk~kJk~) c. 4(k) =gT("-JknkJk*)6 

Since the operator (Jk&kJk*)(JkIikJk*),m ~18 (I, -Xk)) possesses the scune properties as the operator 
?fTII, the estimate 

I~~~)ii48~~E~.r(-hja~~~~)~~,/A(P)lpfpl-~, ~g~(r+ip (3.12) 
0 i 

follows from (3.11) in conformity with Theorem 2.1. 
Using (3.4), (3.5) and (3.7), we obtain 

~~~~llAlV)P=O 

In conformity with (3.8) 

(3.13) 

(3.14) 

According to (l-12), UA~~f)U~g~(~)~a(j)~, where k (t) = IJt - JkIlkJk* 6. Let 

Q,b = $,,, zDmQ,t = 9% Q,a (t) = 8, 



792 

Taking 

Hence, 
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into account (2.8), (3.7) and (3.9), we have 

%n f@ = %&%c-S?&* %") + @k@h%*~ -%jt 

taking account of (3.51, the definitions of the operators 6 and @, of (3.41, tile 
triangle inequality, as well as the boundedness of ig(t)lj and ga(l) there follows 

~~~~$I -4 (4 II .= 0 (3.15) 

There results from f3.13)-(3.15) that 2 StJ; fj 8 (l) If== 0. 

Tfie foffoerlng assertfion is therefore proved. 

Theorem 3.1. undex the assuuptians (1.8)- tL.32), (3.4) and (3.51, the approximate 
solution of the thermoviseoelasticity problem obtained by the Galexkin method converges uni- 
formly in time to the exact solution. 

4, DSference approximation af the derivatives with respect to time. AS 
follows from the results in Sect.3 fox the definition of the approximate Gaferkfn solution of 
(2.71, it is necessary to solve the Cauchy problem fox the system of ordinaxy diffsxential eq- 
uations (3.10). Let us consider an approximate (stepwisel method of solwing (3.W by repplac- 
ing the time-derivatives bv finite differences. 

Let t+\&y_1 be 
is an appsoximate 

some p&tition of the time interval S under consideration, dtj= tj - tj.&,) 
value of the function Ch (1,) obtained by a stepwise method 

Then, In conformity with the explicit difference approximation fox (3.103, we obtain 

Cf;'"= (Ix,, - At&,, l&)&j + Ar&,j (4.1) 

when using the implicit approximation with weights we have 

~~~IThfw,Aiig~~~~)f~l=~t,~,ii(~Eh--A~~g~~~~)f;nj t4.2) 

Here q,o;, are the weight factors, w,+o,=i. The impficit difference scheme 14.2) is ab- 
solutely stable for o,‘j?,Vlr however, since the opexator (Is,,+ ~&&,,I&,)-1 is impossible to 
evaluate in explicit form, as a rule, the solution of (4.2) is det6rmfned by iterations by 
the formulas 

&A*:' = bm gx,k 14.3) 1 k-.X g? k = - ~~~~jg=~~~~~l? &-t + {E,, - efjgThqaa) g,i + atjqi 

From (4.2) and (4.3) we obtain 
$+l _,pt,i, _ -~,A\t~g$$,,(6;1 _&?I. k-1) 

Therefore, it is sufficient fox convergence of the iteration process 14.3) that 
o,Atj&g$hI&,~<fr from which by taking account of the estimates for the norms of g,, and n, 
resulting from inegualitles that are even valid, as mentioned above, for finite-dimensional 
operators, we have the criterion for time spacing selection 

(4.4) 

To assure the stability of the explicit schema (4.1) it is sufficient to require /IO/that 
the norm of the transition operator rhf== ir, -&j&h a,$ not be greater than one. Estimation 
of the norm of B'& is made difficult by the fact that the operator rtz is noz-self-adjoint 
because of the noncommutativity of gTh and ff,. The operator r,,i becomes self-adjoint dux- 
ing renormalization of the space Eh by using the energetic scalar product WllI*, TT t*hthr xhk$,. 

Taking 5.n~~ account that for a self-adjoint positive definite operator Jl,, there cfxists a self- 
adjoint operator II;,? WJCh that n;:: nzt - &, , we have 

I @wh’Sh. ZdF,, I 
f%;,, fEh 

=sup l- 
% i 

ar, m;;~g~hlI;at. X,)Eh 
fr,. X,),h (4.5) 

x~=IP~~EE~. Q,=l-At.inf 
h ’ %I 

, Qt= 
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The quantity Q~< 1 because of nonnegativity of the OperatOr gTh’ For Qlei it is suf- 

ficient to require 

Ar < 2 I(?&- (4.6) 
3 21 ’ .) c 2 / !t n;,i’&,“;i 11 

Condition (4.6) is the sufficient condition for stability of the explicit scheme (4.1). 
The scheme (4.1) and (4.2) are first and second order approximations, respectively, which in 
combination with the stability assures their convergence with the same order of accuracy /lo/. 
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